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The breakup mechanism of a capillary jet with thermocapillarity is investigated. Effects 
of the heat transfer from the liquid to the surrounding ambient, the liquid thermal 
conductivity, and the temperature-dependent surface tension coefficient on the jet 
instability and the formation of satellite drops are considered. Two different disturbances 
are imposed on the jet. In the first case, the jet is exposed to a spatially periodic ambient 
temperature. In addition to the thermal boundary condition, an initial surface 
disturbance with the same wavenumber as the thermal disturbance is also imposed on 
the jet. Both in-phase and out-of-phase thermal disturbances with respect to surface 
disturbances are considered. For the in-phase thermal disturbances, a parameter set is 
obtained at which capillary and thermocapillary effects can cancel each other and the 
jet attains a stable configuration. No such parameter set can be obtained when the 
thermocapillary flows are in the same direction as the capillary flows, as in the out-of- 
phase thermal disturbances. In the second case, only an initial thermal disturbance is 
imposed on the surface of the liquid while the ambient temperature is kept spatially and 
temporally uniform. 

1. Introduction 
More than a century after Rayleigh’s (1879) first paper on the instability of an 

isothermal liquid jet, Bauer (1984), Xu & Davis (1985), and, more recently, Dijkstra & 
Steen (1991) considered the ‘linear’ instability of a non-isothermal jet with 
temperature-dependent surface tension coefficient. Here, we present a nonlinear 
analysis for instability of such jets. 

In non-isothermal capillary jets, variation of the surface tension with temperature 
along the free surface of the liquid results in a tangential shear force on the surface 
which induces the so-called thermocapillary flows (Ostrach 1982; Davis 1987). 
Thermocapillary effects can, depending on the particular conditions, enhance or retard 
the instability. The former effect can be used in controlling the breakup of the liquid 
jets, and the latter to attain long and stable liquid columns. The controlled breakup of 
the liquid jets is mainly utilized in the production of spherical drops, such as in ink jet 
printers and in the manufacturing of microspheres. On the other hand, more stable and 
long liquid columns are useful in such processes as containerless processing of single 
crystals, wave soldering, and liquid metal spinning. These processes are dependent on 
the length and stability of the liquid column that can be sustained in an ambient with 
varying temperature. 

Techniques used to control the breakup of a liquid jet are mainly based on applying 
a periodic disturbance on the jet surface or the liquid supply system. Surface, pressure, 
or velocity disturbances have been commonly utilized. It is conceivable, however, to 
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develop a technique based on disturbing the liquid properties, such as the liquid surface 
tension. Since, the liquid surface tension is strongly dependent on the temperature, it 
can be controlled by controlling the liquid temperature. This technique was utilized by 
Faidley & Panton (1990) to control the breakup of a water jet. They used a small, fast- 
responding heater at the orifice of a nozzle to modulate the surface tension along a jet 
of water issuing into air. Their results indicated that the Rayleigh instability mode was 
dominant in this case and no significant variation in the growth rates was observed. 
This was attributed to the lack of sufficient power in the heating element to excite 
another instability mode. Later Nahas & Panton (1991) used laser radiation in order 
to better control the changes in the liquid surface tension. A CO, laser beam modulated 
at the same frequency as the primary surface disturbance was focused on the surface 
of the jet. They were able to cancel the primary surface disturbance by an appropriate 
adjustment of the laser intensity and phase. This technique shows promise as an 
alternative method for controlling the breakup of a liquid jet. 

The instability studies of isothermal liquid jets using an initial disturbance with 
known amplitude and wavelength are exemplified by the analytical investigation of 
Rayleigh (1879), Yuen (1968), and Chaudhary & Redekopp (1980); experimental 
studies of Plateau (1873), Goedde & Yuen (1970), and Vassallo & Ashgriz (1991); and 
numerical simulations of Fromm (1984), Shokoohi & Elrod (1987), Mansour & 
Lundgren (1990), and Ashgriz & Mashayek (1994). All these studies have considered 
a jet with constant liquid properties. 

Compared to the isothermal jet instability, there is very limited number of studies on 
the non-isothermal jets. Bauer (1984) provided the first study on the linear instability 
of an infinitely long axisymmetric liquid jet or column with a temperature-dependent 
surface tension coefficient. He assumed a creeping flow and imposed an arbitrary 
axially periodic temperature field on the liquid surface, and obtained an analytical 
solution for the growth rate of the disturbances. He concluded that the breakup of a 
liquid jet may occur not only for surface amplitude disturbances with axial wavelengths 
larger than the circumference of the jet, but also through oscillatory temperature 
gradients that excite the otherwise calm free surface. Later, Xu & Davis (1985, 
hereinafter referred to as XD) considered a linear temperature gradient along the liquid 
surface. Using a lubrication theory, they found the velocity and temperature 
distributions inside the jet due to a convective heat transfer with the ambient. This was 
used as the basic state for the jet. They found that the capillary instabilities can be 
greatly retarded or even suppressed by surface wave instabilities. Similar stabilizing 
effects have been observed by Russo & Steen (1989) in the study of the capillary 
breakup of long liquid cylinders subject to a shear on the surface. They showed that 
for a certain range of non-dimensional parameters the addition of surface waves, 
produced by the applied shear on the surface of the cylinder, stabilized the capillary 
waves. Later, Dijkstra & Steen (1991) considered the thermocapillary stabilization of 
annular films of liquids. Similarly to XD, base flows were generated by a gradient in 
surface tension induced by a linear temperature gradient along the interface. Using a 
linear stability analysis, they showed that complete stabilization is achieved due to the 
thermocapillary-driven motions. 

In addition to the above-mentioned studies, many other investigators have reported 
on general thermocapillary flows. These have been mainly in two- or three-dimensional 
planar liquid layers or in short and stable cylindrical liquid columns. For instance, 
Sen & Davis (1982) studied the flow of a liquid in a two-dimensional slot subject 
to a temperature gradient on the surface. They assumed small aspect ratios, 
A = depth/length, and developed an asymptotic theory which was valid for A + 0. The 
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capillary number was also assumed to be very small which implied very large mean 
surface tension and, therefore, very small surface deformations were allowed. Cowley 
& Davis (1983) considered the liquid lying in a quarter-plane with a non-deflecting 
thermally insulated interface. The sidewall was insulated and held at a fixed 
temperature. They found that the strongest thermocapillary flows were confined to 
very small corner region which resulted in the worst convection-generated defect in 
crystal growth. 

The instability of both two- and three-dimensional sheared liquid layers subject to 
a temperature gradient along the layer were studied in detail by Smith & Davis (1982, 
1983a, b). For three-dimensional layers, they identified two broad classes of 
instabilities. The first was a convective or thermal instability whose mechanism 
involved a balance between heat conduction and heat convection at the free surface 
and was relatively unaffected by the free surface deformation. The second class was a 
surface wave instability whose mechanism involved the mechanical transfer of 
momentum from the basic state to the disturbances and was highly dependent on the 
free surface deformations. The thermal instabilities were of two types: (i) stationary 
longitudinal rolls produced in a layer heated from below, and (ii) propagating 
hydrothermal waves which derived their energy from the imposed horizontal 
temperature gradient when the Prandtl number of the liquid was small and from a 
vertical temperature gradient when the Prandtl number was large. Later, Smith (1986) 
described the physical mechanism for the hydrothermal wave instability in dynamic 
thermocapillary liquid layers by considering low and large Prandtl number liquids. 

The study of thermocapillary-induced flows was then extended to axisymmetric 
liquid bridges by Xu & Davis (1983) who assumed an axial temperature gradient. They 
relaxed the limiting assumptions for capillary, Reynolds, and Marangoni numbers, and 
allowed large surface deformations, but considered the core flows only away from the 
endwalls. Xu & Davis (1984), using the same basic state as stated earlier for XD, 
studied the convective thermocapillary instability in liquid bridges. They ignored the 
presence of the endwalls of the zone, the interfacial deformation, and gravity. They 
obtained axisymmetric waves which propagated against the surface flow for large 
Prandtl numbers. 

Numerical investigations of thermocapillary-induced flows are also largely devoted 
to liquid columns. Cuvelier & Driessen (1986) studied the two-dimensional steady 
thermocapillary flow in a column for a large group of non-dimensional parameters. 
They used the finite element method along with three different iterative methods for the 
computation of the free boundary. They concluded that for melts with low Prandtl 
numbers the temperature distribution is almost independent of the flow, because heat 
is mainly transferred by conduction. However, for high Prandtl number liquids, 
convective heat transfer is significant and the isotherms become more distorted. Energy 
stability theory was used by Shen et al. (1990) to investigate the stability of a cylindrical 
half-zone of finite length subject to thermocapillary convection. They obtained values 
of the Marangoni number below which axisymmetric disturbances decayed, for various 
values of other significant parameters. 

Kazarinoff & Wilkowski (1990) studied the bifurcation of thermocapillary flows in 
axisymmetric float zones and indicated that the aspect ratio (ratio of the length to 
radius) plays a critical role. Their numerical technique was a hybrid of finite difference 
and finite element methods - the latter was used to determine the location of the free 
surface. Thermocapillary convection in layers with small depth and subject to a 
horizontal temperature gradient was studied by Hadid & Roux (1990) using a finite 
difference technique. They observed multi-roll structure near the cold endwall, with the 
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FIGURE 1. The fluid zone is confined to the free surface, at the top, which is represented by heights 
h. A typical bilinear element e used for simulations is also shown on the figure with its corresponding 
local node numbering. h is the disturbance wavelength and R is the initial non-disturbed radius of the 
jet. A convective heat transfer with the ambient at temperature T, is considered with the coefficient 
of convective heat transfer h,. 

number of rolls increasing with Reynolds number. Doi & Koster (1993) considered 
thermocapillary-induced flows in two immiscible liquid layers with one free surface and 
one liquid/liquid interface. A ‘halt’ condition was found that prevented the motion of 
the liquid in the lower encapsulated liquid layer. Kuhlmann & Rath (1993) solved for 
the basic state and the three-dimensional disturbance equations by various spectral 
methods to study the hydrodynamic instabilities in cylindrical thermocapillary bridges. 
They found that critical modes have azimuthal wavenumber of one and the most 
dangerous disturbance was either a pure hydrodynamic steady mode or an oscillatory 
hydrothermal wave, depending on the Prandtl number. 

In this paper the temporal instability of a liquid jet, or a long liquid column, with 
thermocapillarity subject to periodic disturbances is investigated. The objectives are to 
identify the effects of various parameters on the nonlinear thermocapillary instability 
of liquid jets and the formation of the satellite drops; and to identify the thermal 
disturbances which either favour the breakup of liquid jets or help the formation of 
more stable liquid columns. Both thermal and surface disturbances are used. In $2 the 
mathematical formulation of the problem is provided along with a description of the 
numerical procedure. In $3 the jet is exposed to an ambient with spatially periodic 
temperaure distribution, while in $4 the instability of the jet in a spatially and 
temporally uniform ambient and subject to an initial thermal (as well as surface) 
disturbance is investigated. Discussion and conclusions are given in $ 5. 

2. Mathematical and numerical formulation 
The temporal instability of a thermocapillary jet in a dynamically inactive ambient 

and in the absence of gravity is investigated. We consider an axisymmetric laminar flow 
of a viscous incompressible liquid jet which is stationary relative to a moving observer. 
The liquid is Newtonian with constant viscosity p, density p, specific heat cp, and 
thermal conductivity K .  The liquid surface tension, a’, is assumed to be a linear function 
of temperature: a’ = aI, - y ( T  - Ti), where T‘ is the liquid temperature, ah is the 
surface tension coefficient at a reference temperature TI, (in 93, T i  is defined as the 
lowest temperature in the ambient, and in $4, as the initial temperature of the liquid), 
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and y is the rate of change of surface tension coefficient with temperature. The length, 
time, velocity, and pressure are scaled by Rh, ,uRh/yAT’, yATf / ,u ,  and yAT’ /R&,  
respectively, where Rh is the unperturbed radius of the axisymmetric liquid jet, and AT‘ 
is a characteristic temperature difference. In $ 3  AT‘ is defined as the difference between 
the initial temperature of the jet and Th, and in $4 it is defined as the difference between 
the ambient temperature and Th. In addition, temperature is non-dimensionalized as 
T = ( T ’ -  Ti ) /AT‘ .  Consequently, the following dimensionless numbers are obtained : 

py AT’Rh y ATf hc Rh 
Pa ah K 

Re = , C a = -  , M a =  RePr, B i = - ,  

where Re, Ca, Ma, Pr = , u c p / K ,  and Bi are the Reynolds, capillary, Marangoni, 
Prandtl, and Biot numbers, respectively. Here, a convective heat transfer with the 
surrounding gas at temperature Ti ,  and with constant convective heat transfer 
coefficient h, is assumed. T i  is not constant in general and may vary with the axial 
coordinate z. The variation of the surface tension with temperature in non-dimensional 
form is 

(2) 

The governing equations for the flow are the continuity, momentum, and energy 
equations which are stated in dimensionless form as follows: 

a = a’/ah = 1 - Ca T.  

V * U  = 0, 

Re DulDt = V - 0, 

M a D T / D t  = V’T, 

where u = (u, v )  is the velocity vector in axisymmetric coordinate ( z ,  r) ,  

d = - p i +  [VU + (VU)’] 

is the stress tensor for Newtonian fluid, and D / D t  = a/at+u.V is the total derivative 
operator with V being the gradient operator. 

The stress balance on the free surface provides the following boundary conditions 
(assuming the ambient pressure as the datum): 

c - n  = &n+r;lt ,  (6 a)  

where 

n and t are the outward unit normal and tangent to the surface, respectively, and K is 
the curvature of the surface. Subscripts z and r refer to partial derivatives in the z- and 
r-directions, respectively. The free surface is represented by a height function h(z, t )  
(Mashayek & Ashgriz 1993), which is independent of the radius r,  as shown in figure 1. 
Therefore, K is given by 

h z z  1 
(1 + h33 /2  - h( 1 + h;)lI2 * 

K =  

The convective heat transfer with the ambient is described by 

Bi 
V T - n  = -(c- q), 

Ma 

(7) 

where T, is the temperature of the liquid at the free surface. Since a temporal analysis 
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is considered here, the symmetry boundary conditions are applied both on the axis of 
the symmetry z ,  and on the end planes of the half-wavelength: 

(10) 
aT - av 

u=O,  - - 0 ,  az - = 0  aZ at z = 0 7 h / 2 ,  

where h is the non-dimensional disturbance wavelength. 
A Galerkin finite element method is used to solve (3)-(5). Four-node bilinear 

isoparametric elements are used to approximate the velocity and temperature 
distribution over each element : 

4 

u(z, r, 0 = C ui(t) Ni(z, r, t) ,  

T(z, r ,  t )  = C Ti(t) Ni(z, r ,  t).  

i=l 

4 

i=l 

A moving mesh is used to discretize the computational domain, resulting in time- 
dependent shape functions. For the momentum equation a penalty function 
formulation is implemented where the pressure is eliminated from the set of unknown 
variables by absorbing the continuity equation (3) into the momentum equation (4). 
Therefore, the pressure is defined as 

p = - m . u ,  (13) 
where Y is a large number (- O( lo1')) depending on ,LL and Re (Hughes, Liu & Brooks 
1979). The following closed-form finite element formulations for the velocity and 
temperature fields are derived : 

where 52 and r are the element volume and boundary, respectively. The above 
formulation is based on the Eulerian or fixed mesh where the locations of the nodes do 
not change with time. Special treatment of time derivatives is necessary when a moving 
grid is considered. Since the shape function has time dependency the time derivative of 
velocity in discretized form becomes 

au du. aN. 
at dt at 
- _  - C-Ni+C,ui2.  

The last term of (16) introduces a new convective term in (14). Here, motion of the 
nodes in the r-direction only is allowed according to the following simple rule: 

zi(t+6t) = zi(t) = constant, ri(t+6t) = cri(t), (17) 
where the subscript i refers to the node number, and c = (z ,  t )  is a constant for each 
column of nodes in the radial direction defined as 
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Surface radius Surface temperature 
Mesh Breakup time at z = ;A a t z = O  

4 0 x 4  24.229 0.351 22 0.064 5 1 
40 x 6 24.241 0.35000 0.062 58 
40 x I 24.242 0.349 66 0.06228 

TABLE 1 .  The effect of mesh refinement on the accuracy of the results 

Mashayek & Ashgriz (1993) have shown that the total derivative of velocity in this case 
becomes 

- _  DU au au ( cSti 1; 
--+u-+ v - - r  -. 

Dt at az 

Convective terms in the energy equation are modified similarly. 
A detailed code validation is provided in Mashayek (1994) and is not repeated here. 

It suffices to mention that the results of our code for the thennocapillary flows in finite- 
length liquid columns are compared with those of Xu & Davis (1983), Fu & Ostrach 
(1985), Kuhlmann (1989), Shen et al. (1990), and Kuhlmann & Rath (1993). The 
convective heat transfer from the ambient to a liquid column with its ends held at 
constant temperatures of T(z = 0) = -0.5 and T(z = 1) = 0.5 is analysed. The surface 
of the column is assumed to be non-deformable and a linear variation for the ambient 
temperature is assumed as T,(z) = 2-03. The agreement between our solution and 
theirs is very good; however, we find a better agreement with the spectral solution of 
Kuhlmann & Rath (1993) than the finite difference calculations of Shen et al. (1990). 
For instance, the measured temperature from the isotherm plot given by Kuhlmann & 
Rath at z = 0.536 and r = 1 (on the surface) is 0.1 which is in very good agreement with 
0.0991 obtained in our simulation. Also, at z = 0.832 and r = 0 (on the axis of 
symmetry), T = 0.4 from their results which compares very well with T = 0.4007 
obtained here. 

The test simulations were performed on a 22x20 finite element mesh with 
compressed elements close to the endwalls and the free surface to resolve the 
hydrodynamic and thermal boundary layers formed in these regions. For the 
simulations considered here, the aspect ratio (or the wavelength/radius in the context 
of the infinite jet) is larger than unity and the flow is more aligned with the axial 
direction. Typically, 7 to 10 elements in the radial direction were found to be 
appropriate for aspect ratios about 4 (wavenumbers about 0.8) along with 40 elements 
in the axial direction. However, the appropriate mesh depends on the initial and 
boundary conditions and for each particular case is found by comparing the results of 
simulations performed on meshes with different resolutions. Typical results for a jet 
with Re = 20, Ma = 200, Ca = 0.2, Bi = 10 and k = 0.7 are given in table 1 (a detailed 
description of the problem is given in 3 3.1). Table 1 indicates good accuracy with 40 x 7 
element mesh and so this has been used for the simulations described in 33.1. 

3. Spatially periodic ambient temperature 
Consider a jet with an initial surface disturbance of 

r(z) = R - e,, cos (kz),  

where e,, is the initial amplitude of the disturbance and R is determined such that the 
volume is conserved when the initial amplitude is varied, i.e. R = (1  -!&)’’’. In the 
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temporal study of a liquid jet, owing to the symmetry only half of one wavelength 
is sufficient in the analysis. The trough of the initial surface is set at z = 0 where 
T , ( O )  = 0, and the crest is at z = +A where T,(ih) = 1 (figure 1). Hereinafter, the initial 
crest of the sinusoidal surface is referred to as the swell and its trough is referred to as 
the neck. 

In this section we study the instability of the jet when exposed to an ambient with 
spatially periodic temperature T,(z) given by 

T,(z) = 0.5[1 - c o s ( ~ z + ~ ) ] ,  (21) 

where 8 is the phase difference between the period of the ambient temperature variation 
and the period of the surface disturbance (20). In order to retain the symmetric 
boundary conditions in our temporal analysis, we can only investigate 8 = 0 and 
8 = 180". 

3.1. In-phase thermal and surface disturbances (8 = 0)  
The problem is characterized by non-dimensional numbers Re, Ma, Ca, Bi, and the 
wavenumber k = 27t/h. We assume that the jet initially is at a higher temperature than 
the ambient with T(r,z)  = 1. The reference temperature, Ti, is defined as the lowest 
temperature in the ambient, i.e. TI, = TL(z = 0) ,  and the characteristic temperature 
difference, AT', is defined as the difference between the initial temperature of the jet 
and the reference temperature, i.e. AT' = T'(t = 0)- Ti.  

3.1.1. Marginally stable jets 
From the set of parameters affecting the behaviour of a liquid jet we confine our 

study to Bi, Ma, and Ca. The other parameters are fixed at Re = 20 and k = 0.7. Other 
studies on the capillary jet instability (e.g. Chandrasekhar 1961 ; Ashgriz & Mashayek 
1994) have revealed that the dynamics of a liquid jet does not change significantly for 
Re > 10. At lower Re, disturbances grow at much smaller rates. In addition, the 
maximum growth rate for the capillary jets with Re - O(10) occurs around k = 0.7. 
Hence, Re = 20 and k = 0.7 are chosen for the base case - the wavenumber effect is 
investigated in $3.1.2. 

For 0 = 0 the neck is exposed to a lower surrounding temperature than the swell. 
Therefore, the thermal disturbance presented by (2 1) induces a thermocapillary flow 
(from higher surface temperature at the swell towards the lower surface temperature 
at the neck) in the opposite direction to the capillary flow (from smaller radius at the 
neck towards the larger radius at the swell). The relative magnitude of these two flows 
determines the behaviour of the jet. We call the fluid motion induced by the surface 
displacement 'capillary flows' and that induced by the temperature dependency of the 
surface tension coefficient ' thermocapillary flows '. The two flows are directly coupled 
and the distinction is made only for descriptive purposes. Figure 2 shows the time 
sequence of the evolution of the jets with Re = 20, Ma = 200, Ca = 0.2, k = 0.7, 
co = 0.05, and for various Bi. For the jet shown in figure 2(a) no heat transfer with the 
outside is allowed (W = 0); therefore, this is an isothermal jet and the breakup occurs 
due to the capillary effects only. The higher pressure at the centre of the jet (neck point) 
pushes the fluid toward the sides (swell points). The sinusoidal shape of the surface is 
conserved during most of the breakup time; however, nonlinearities finally take over 
and the location of the point with the minimum radius starts to move away from the 
centre. Consequently, at the time of breakup, a long ligament is formed between the 
main drops. Although the computations are stopped at the breakup point, the long 
ligament will eventually form a spherical satellite drop. Figure 2(d) shows the 
instability of a jet with the same surface temperature distribution as the ambient, i.e. 
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(4 (b)  ( C )  (4 
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FIGURE 2. Time evolutions of surfaces of four jets with (a) Bi = 0, (6) Bi = 1.37, (c) Bi = 1.38, and 
(d) Bi = co. For all jets a surface displacement was applied accompanied by a thermal disturbance 
which increased sinusoidally from 0 at the neck to 1 at the swell of the initial surface disturbance. The 
initial temperature was T = 1 ; Re = 20, Mu = 200, Ca = 0.2, k = 0.7, and e0 = 0.05 for all jets. The 
numbers on the figure represent the time. Critical breakup of the jets occurs in the interval 
1.37 < Bi < 1.38. 

T,(z) = q ( z ) ,  as well as a surface disturbance with q, = 0.05. This condition represents 
the limiting case of Bi = 00, where the surface temperature follows that of the ambient 
due to infinitely large convective heat transfer. Since the surface temperature at the 
neck is persistently kept lower than that of the swell, the thermocapillary flows 
overcome the capillary flows and the amplitude of the neck increases. During the 
remainder of the breakup process thermocapillary and capillary effects are comp- 
lementary and the disturbance amplitude grows at a faster rate. 

The two limiting cases shown in figures 2 (a) and 2 ( d )  indicate that, depending on the 
relative effects of the capillary and thermocapillary flows, different instability modes 
can be obtained. Figures 2(b) and 2(c )  show that the transition from the capillary- 
dominated instability to the thermocapillary-dominated one is not smooth - at the 
transition point a sudden change in the behaviour of the jet is observed. In this case, 
the change in the jet behaviour has occurred in the interval of 1.37 < Bi < 1.38. 
Determination of the exact critical Bi at which the transition occurs is computationally 
prohibitive. However, the behaviour of the jet in the neighbourhood of the critical Bi 
indicates that the jet is marginally stable at this Bi value. 

A parameter which implies that the jet is marginally stable at the critical Bi is the jet 
breakup time. The jet breakup time for a large range of Bi is shown in figure 3. The 
breakup time is defined as the time it takes for the radius of the jet to reach a certain 
minimum value (r = 0.01) after which the computation is stopped. When Bi is 
increased from very small values or decreased from very large values the breakup time 
increases. As Bi becomes closer to the critical Bi the breakup time increases at a faster 
rate, such that for Bi = 1.37 the breakup time is about five times as large as that of an 
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t. Capillary breakup 
t -+ Thennocapillary breakup 

Satellite drop Main drop 
Bi radius radius 

0 
0.1 
1 .o 
1.3 
1.35 
1.37 
1.38 
1.4 
2.0 

10.0 
03 

0.575 
0.474 
0.398 
0.366 
0.355 
0.329 
0.620 
0.614 
0.615 
0.656 
0.662 

1.871 
1.878 
1.882 
1.884 
1.885 
1.886 
1.866 
1.866 
1.866 
1.862 
1.861 

TABLE 2. Variation of satellite and main drop radius with Bi. Re = 20, Ma = 200, 
Ca = 0.2, k = 0.7, and eo = 0.05 

isothermal jet. These results imply that at the critical Bi the breakup time is infinite and 
the jet is marginally stable. It should be emphasized that this stability point does not 
mean that the disturbances will damp out, yet the surface of the jet attains a particular 
configuration such that the capillary and thermocapillary effects continuously cancel 
each other out. 

Variations of the radii of the main (larger) and satellite (smaller) drops produced due 
to the breakup of the jet with Bi are provided in table 2. The radii of the main and 
satellite drops are calculated based on nominal spherical drops having the same 
volumes as the two liquid masses produced after the breakup. The radius of the satellite 
produced with Bi = 1.38 is almost twice that of the radius of the satellite produced at 
Bi = 1.37. The satellite radius decreases continuously as Bi is increased toward its 
critical value. Similarly, the satellite radius decreases continuously as Bi is decreased 
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2 

toward its critical value. A small increase in the satellite size is noted when Bi is 
decreased from 1.4 to 1.38. This increase is due to the increase in the breakup time 
which results in an increase in the surface temperature gradient. For instance, for 
Bi= 2.0, at the time of breakup the surface temperatures at the neck and 
swell are T,(z = 0) = 0.324 and LT,(z = :A) = 0.997, respectively, i.e. AT, = 0.673. As 
Bi is reduced to 1.4, the corresponding temperatures are T,(z = 0) = 0.359 and 
LT,(z = :A) = 0.994, i.e. ALT, = 0.635. Therefore, a reduction in Bi causes a reduction in 
the surface temperature gradient and, consequently, a weaker thermocapillary effect. 
However, as Bi is further reduced to Bi = 1.38, the corresponding surface temperatures 
become T,(z = 0) = 0.345 and T,(z = +A) = 0.992, i.e. AT, = 0.647. Since the breakup 
time is increased significantly close to the critical Bi the surface temperature gradient 
increases slightly and, therefore, so does the satellite size. 

Consider the two cases with Bi closest to the critical point, meaning Bi = 1.37 and 
1.38. Time variation of the radius of the jet at the neck ( z  = 0) and the swell ( z  = +A) 
points is presented in figure 4. Figure 4(a) for Bi = 1.37 shows that the amplitude of 
the disturbance at these points increases with a very small rate for about 80% of the 
breakup time. Up to this time the capillary and thermocapillary forces are of the same 
order until, finally, owing to the increase of curvature of the surface at the neck region 
and decrease of curvature at the swell region the capillary forces dominate. It should 
be mentioned that the thermocapillary effects are also increasing with time owing to the 
increase of heat transfer to the ambient that produces larger temperature gradients on 
the surface. In fact, for the case of Bi = 1.38 (figure 4 b )  the rate of increase of 
thermocapillary effects is slightly larger than the rate of increase of capillary forces. 
Figure 4(b) indicates that at Bi = 1.38 the capillary effects are dominant in the 
beginning ; however, thermocapillary forces finally overcome and the rates of change 
of radii of neck and swell are inverted. Similar behaviour is observed for the variations 
of radial velocities at the neck and swell points (Mashayek 1994). 

The competing effects of the capillary and thermocapillary flows can be directly 
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(4 t = 15.21 

I I 
FIGURE 5. Velocity vector plots for the jet with Bi = 1.37, shown on figure 2(b), at three different 
times. Numbers above the figures show the time and x represents the scale of the velocity vectors. 

observed by studying the velocity fields. Plots of velocity vectors are given in figures 5 
and 6 at three different times for Bi = 1.37 and 1.38, respectively. Notice that the 
velocity vectors in each plot are scaled such that the flow fields can be clearly visualized. 
The scale given on each plot is based on the case with x = 1. The first plot of each figure 
shows the velocity field at an earlier time when the capillary forces are dominant and 
the net flow is from the neck toward the swell. Because of the transient nature of the 
problem both capillary and thermocapillary flows increase in time. For Bi = 1.37 the 
capillary forces remain dominant throughout the lifetime of the jet and eventually a 
substantial net flow is observed from the neck to swell, as shown in figure 5(c). A 
considerable thermocapillary flow is still observed along the surface which retards the 
growth rate of the surface disturbance. However, for Bi = 1.38 the thermocapillary 
flows eventually dominate and the initial neck and swell points are displaced upward 
and downward, respectively, as shown in figure 6(c) .  The circulation zone has moved 
to the left end of the jet close to the axis, and will later move out of the jet entirely. At 
this time the capillary forces are in the same direction as the thermocapillary forces 
increasing the growth rate of the disturbance. 

In figures 7 and 8 we present the isotherms for the jets with Bi = 1.37 and 1.38, 
respectively. Similarly to the velocity fields, the isotherms for the two cases show small 
differences during the first half of the breakup time (compare figures 7 a  and 8 4 .  
However, as soon as the velocity fields start to develop in different directions so do the 
isotherms. The dominant thermocapillary convective flows deform the isotherms in the 
direction of the flow field. The largest isotherm deformations are observed in the 
breakup region owing to the high velocity gradients in this region. Close inspection of 
isotherms shown in figures 7 and 8 ,  and also isotherm plots shown in other sections of 
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FIGURE 6 .  As figure 5 but for the jet with Bi = 1.38, shown on figure 2(c). 

FIGURE 7. Isotherms for the jet of figure 2(b) with Bi = 1.37 at two different times. Numbers above 
figures represent the time and numbers below figures show the value of the isotherms. The lowest 
isotherm on each figure is located close to the top-left corner of that figure. 
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FIGURE 8. As figure 7 but for the jet of figure 2(c) with Bi = 1.38. 

this paper, indicates that in some cases isotherms are not normal to the z-axis which 
is not consistent with the boundary condition a T p r  = 0 given in (9). The reason is that 
in these cases aT/az is also very close to zero and the isotherms which should be normal 
to VTwill not be normal to the z-axis except for very small r .  To capture the exact form 
of isotherms one should use very fine mesh close to the z-axis which would substantially 
increase computational time. On the other hand, temperature gradients on the z-axis 
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FIGURE 9. Critical surface for jets with Re = 20, k = 0.7, and q, = 0.05. For any pair of Mu and Ca 
a point is assigned above which the thermocapillary-dominated breakup and below which capillary- 
dominated breakup occurs. 

do not affect the instability of the jet significantly, since thermocapillary flows are 
induced by temperature gradients along the free surface only. Therefore, in order to 
have reasonable computational times we have used smaller elements close to the free 
surface and larger elements near the z-axis. Typical simulations on finer meshes close 
to the z-axis were also performed and it was verified that changes in the final outcome 
of the jet instability were negligible. It should be mentioned that similar deviations are 
also observed in the results provided by other authors (e.g. Cuvelier & Driessen 1986). 

Because of its significance, the critical Bi for a wide range of Ma and Ca has been 
obtained. Other parameters are kept constant at Re = 20, k = 0.7, and en = 0.05. 
Figure 9 shows the variation of the critical Bi versus Ma for three different Ca. Two 
different symbols (filled and non-filled) are shown on the figure to represent the two 
limiting cases with capillary- and thermocapillary-dominated instabilities. The lower 
non-filled symbol belongs to the capillary-dominated breakup. Figure 9 shows that 
decreasing Ca and/or increasing Ma increases the critical Bi. Interestingly, on a 
log-log plane, the variation of the critical Bi with Ma for any constant Ca is 
approximately linear. Also, for the range of parameters studied here, the lines for 
different Ca are approximately parallel. No thermocapillary breakup could be 
obtained for Ca < 0.05 irrespective of the value of Ma. (Re, k, and E,, were kept 
constant at 20, 0.7, and 0.05, respectively.) Although the effect of disturbance 
amplitude, co, is not studied here, it is believed that the critical Bi will increase with an 
increase in E,,, since stronger thermocapillary flows will be required in order to balance 
the capillary flows. 

3.1.2. Effect of the disturbance wavenumber 
Numerical simulations have been carried out for Re = 200, Ma = 20, Ca = 0.02, 

Bi = 10, q, = 0.05, and four different wavenumbers k = 0.3,0.5,0.7,0.9. For this study 
the initial liquid temperature is set at T = 1 and the ambient temperature is varied 
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FIGURE 10. Variations of the breakup time versus wavenumber for Re = 200, Ma = 20, Ca = 0.02, 
Bi = 10, and e0 = 0.05. Solid line represents the results of linear theory by Chandrasekhar (1961) for 
capillary jets. A surface displacement is considered accompanied by a thermal disturbance which 
increases sinusoidally from 0 at the neck to 1 at the swell of the initial surface disturbance. The initial 
temperature is T = 1 throughout the jets. 

sinusoidally from 0 at the neck, to 1 at the swell. Therefore, the mean temperature of 
the jet decreases in time. Figure 10 shows the breakup times for cases with and without 
thermocapillarity along with the analytical curve by Chandrasekhar’s (1 961) linear 
theory for viscous capillary jets with Re = 200. The analytical curve has been 
calculated from the growth rate, w ,  using the relation: t ,  = ln(R/c,)/w. The results 
indicate that as the wavenumber increases the thermocapillary jet further deviates from 
the capillary jet. For a wavenumber of k = 0.9 the breakup time of the thermocapillary 
jet is about twice as large as that of the capillary jet. 

Typical curves showing the time variations of logarithmic values of the normalized 
amplitudes of the swell ( ( r ,  -R)/E,,), the neck ( ( r ,  - R)/eo)  and their difference 
((r,--r,)/c,) for two wavenumbers of 0.7 and 0.9 are given in figure 11. Here, r ,  and 
r ,  are the radii of the neck and the swell points, respectively. While the curves of the 
logarithmic amplitudes seem to be linear during most of the breakup process for 
k = 0.7, they obviously are not close to a line fork = 0.9. As suggested by Donnelly & 
Glaberson (1966) the curve of logarithmic difference of the amplitudes of the swell and 
the neck can be used to calculate an average value for the growth rate (see Mashayek 
& Ashgriz 1993 for the details). The slope of this curve, when approximated by a 
straight line, provides the growth rate. The following growth rates could be determined: 
0.091, 0.125, and 0.14, for k = 0.3, 0.5, and 0.7, respectively. The corresponding 
growth rates for the isothermal capillary jets are 0.097, 0.135, and 0.16 (Ashgriz & 
Mashayek 1994). Clearly the opposing directions of the thermocapillary and capillary 
flows retards the growth rate. In all of the above cases, Bi is less than the critical Bi. 
Close inspection of figure 11 (b) reveals that the curves of the amplitudes of the swell 
and the neck cross each other several times during the first half of the breakup time. 
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FIGURE 1 1. Logarithmic variations of the amplitudes of the swell (---), neck (. . . . .), and the difference 
between them (-) versus time for (a) k = 0.7, and (b )  k = 0.9. Parameters are the same as in figure 
10. 
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x-' = 0.6 

(4 38.920 

FIGURE 12. Isotherms and velocity vector plots for a jet with Re = 200, Mu = 20, Cu = 0.02, 
Bi = 10, k = 0.9, and eo = 0.05. The numbers on the figure show the time, and x represents the scale 
of the velocity vectors. 

This indicates the close competition of capillary- and thermocapillary-induced flows 
during the early stages of the growth of the surface disturbances. 

The observed changes of the breakup time with wavenumber can also be explained 
by considering a typical isotherm and velocity vector plot, as presented in figure 12 for 
k = 0.9. Initially, the interaction of the thennocapillary and capillary forces produces 
a circulating flow near the free surface. As the radius of the neck reduces, the capillary 
effects become stronger, dominating the thennocapillary effects, hence suppressing the 
circulating zone. For k = 0.9, the circulating flow survives for a much longer time than 
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for the smaller wavenumbers. This substantially reduces the growth rate of the surface 
disturbance and results in a larger breakup time. The effects of the flow on the 
temperature field are also shown in figure 12. In figure 12(a), the isotherms are aligned 
relatively parallel to the surface, which indicates a small radial conductive heat 
transfer. The values of the isotherms shown on the figures are 0.1,0.2,0.3,0.4,0.5,0.6, 
0.7, 0.8, 0.9, 0.94, 0.97 and 0.99. The highest isotherm (T = 0.99) in all of the figures 
is the one closest to the right-top corner. Later in time, in figure 12(b), the isotherms 
become more aligned with the radial direction. At this time the turning of the flow in 
the swell region entraps the higher isotherms close to the surface. As the pinch-off 
process occurs and the flow field becomes more non-uniform in the swell region, the 
isotherms appear to be more distorted. In general, since Pr is small (Pr = 0.1) the 
isotherm pattern is not significantly affected by convective motion. 

3.1.3. Comparison with the linear theory 
The numerical results from this study are compared with the linear solution of XD. 

They have considered a convective heat transfer with the surroundings which has a 
linear temperature distribution. In order to analyse the instability of the jet they 
perturb the basic state for the velocity and temperature fields which has already been 
calculated for a non-deformable free surface. The case that we have chosen for 
comparison is identified by Re = 200, Ma = 20, Ca = 0.02, and Bi = 1 (which 
corresponds to their R, = 200, S = lo4, P = 0.1, and B = 1). The domain of validity 
of their solution is restricted to small Cu (small deformation for the surface is allowed) 
and not very small wavenumbers. For the parameter values considered here, XD's 
equation (6.1) requires k 9 0.13. 

To solve the problem we have first developed the basic-state velocity and temperature 
fields using the same boundary and initial conditions, and the same values for the 
dimensionless numbers as XD. The simulated basic state is then considered as the 
initial condition for a jet with the initial surface disturbance amplitude of E~ = 0.01. 
There is a difference, however, between our simulated basic state and the one used by 
XD. They have considered an infinitely long liquid jet rather than a single wavelength 
of the jet. Therefore, their basic state, contrary to ours, does not have a return flow at 
the ends of the half-wavelength. The growth rate for the above jet with wavenumber 
of k = 0.7 based on the linear theory of XD is w = 0.15 - this number is read from 
their figure 7(e) within the accuracy of the thickness of the curve. To calculate the 
growth rate in our simulation we follow the same procedure as described in $3.1.2. For 
the case under consideration the calculated growth rate is w = 0.16 which is very close 
to the result of XD. It appears that for this particular case the return flow in our 
simulation has a weak effect on the growth rate. In order to investigate the 
wavenumber limitation imposed by linear theory (k % 0.13), we also simulated a case 
with k = 0.3 while other parameters were the same as the previous case. The result of 
the simulation shows a 34% reduction in growth rate as compared to the prediction 
of linear theory for k = 0.3. Therefore, the wavenumber limitation (XD's equation 
(6.1)) is rather severe which substantially decreases the range of applicability of the 
results of linear theory for some range of parameter values of practical interest. 

3.2. Out-of-phase thermal and surface disturbances (0 = 180") 
In $3.1.1, we studied the evolution of a liquid jet subject to in-phase surface and 
thermal disturbances and found that for a certain combination of non-dimensional 
numbers a critical condition existed at which the jet was marginally stable. We also 
observed that when the thermocapillary-dominated breakup occurred the uni- 
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FIGURE 13. Isotherms for jets subject to out-of-phase surface and thermal disturbances. The ambient 
temperature varied sinusoidally from 1 at the neck to 0 at the swell and the initial temperature was 
T = 1 throughout the jet. Numbers above figures represent the time and numbers below figures show 
the value of the isotherms. The lowest isotherm on each figure is located close to the top-right corner 
of that figure. Re = 20, k = 0.7 and c0 = 0.05 for all cases. (a) Mu = 20, Ca = 0.02, Bi = 0.1; (b) 
Mu = 20, Cu = 0.02, Bi = 10; (c) Mu = 2, Bi = 1 ; (d) Mu = 200, Ca = 0.02, Bi = 1 ; (e) Mu = 140, 
Cu = 0.002, Bi = 0.05; cf) Ma = 140, Ca = 0.2, Bi = 0.05. 

directional action of capillary and thermocapillary flows accelerated the breakup. In this 
section, we consider the effects of out-of-phase surface and thermal disturbances on the 
jet breakup. 

The problem description and the initial conditions remain the same as in 0 3.1.1, i.e. 
T = 1 and u = z, = 0 at t = 0; however, the thermal boundary condition given in (21) 
is modified to account for a phase shift of 8 = 180": 

In this case the neck point is at a higher temperature than the swell point. Therefore, 
the thermocapillary flows are in the same direction as the capillary flows. In the 
following simulations, Re = 20, k = 0.7, B,, = 0.05 are kept constant and Bi, Ma, and 
Ca are varied. For each of these non-dimensional numbers we consider two orders of 
magnitude variations: Bi = 0.1, 0.3, 1 .O, 3.0 and 10.0, Ma = 2.0, 6.0, 20.0, 60.0 and 
200.0, and Ca = 0.002, 0.006, 0.02, 0.06, 0.12 and 0.2. We begin our discussion by 
considering the isotherm plots for the two limiting cases of each parameter. The times 
at which the shapes of the jets are similar are considered. Figure 13(a, b) shows 
isotherms for Bi = 0.1 and 10 while Ma = 20 and Ca = 0.02 are kept constant. The 
values of the contours are different in the two figures and are given below each figure. 
Comparison of the two figures reveals that increasing Bi does not affect the shape of 
the isotherms and simply results in a cooler jet. Increasing Bi enhances the temperature 
gradient along the surface and strengthens the thermocapillary-induced flows. 
However, for the range of parameters considered here, it did not alter the overall flow 
field substantially. When Ma was changed by two orders of magnitude from 2 to 200 

T,(z) = 0.5[1 +cos(~z)]. (22) 
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Bi Ma 

0.1 20 
0.3 20 
1 20 
3 20 

10 20 

1 2 
1 6 
1 60 
1 200 

1 20 
1 20 
1 20 
1 20 
1 20 

Ca 

0.02 
0.02 
0.02 
0.02 
0.02 

0.02 
0.02 
0.02 
0.02 

0.002 
0.006 
0.06 
0.12 
0.2 

t t n - t c ,  100 
t c ,  

0.79 
0.26 

-1.11 
-3.18 
-5.31 

-3.96 
-2.45 
-0.28 

0.3 

-0.02 
-0.19 
-4.31 
-9.07 

-14.19 

R t h  - 4, 100 
R c a  

0.29 
0.77 
1.99 
3.38 
4.13 

3.53 
2.96 
1.28 
0.71 

0.14 
0.53 
6.64 

13.56 
21.78 

TABLE 3. Percent relative change in breakup time and satellite radius. 
Re = 20, k = 0.7, and e,, = 0.05 

(Bi = 1.0 and Ca = 0.02) the isotherms changed significantly as seen in figure 13(c, d). 
This can be explained by considering that the increase of Ma, while Re is constant, 
corresponds to decrease of thermal conductivity, K .  In figure 13 (c) the conductive heat 
transfer is dominant and the isotherms are aligned radially because the heat transferred 
to the jet at the surface is conducted to the core fluid quickly. However, the weak 
conduction effects at high Ma results in the alignment of the isotherms with the flow 
direction as seen in figure 13(d). 

Increase of Ca affects the isotherms inversely as compared to Ma. An increase in Ca, 
keeping Ma constant, indicates a decrease in the surface tension of the liquid, ah. 
Therefore, the capillary forces become smaller and the surface disturbances grow 
slower. Figures 13 (e) and 13(f) show that increasing Ca from 0.002 to 0.2, keeping Bi 
and Ma constant at 1.0 and 20, respectively, results in more radially aligned isotherms. 
This variation of the shapes of the isotherms with Ca can be explained by comparing 
the magnitude of the velocities and the times corresponding to the similar shapes of the 
two jets. For instance, the magnitudes of the velocities obtained for the jet with 
Ca = 0.002 are about one order of magnitude larger than for the jet with Ca = 0.2. This 
means that the convective heat transfer must be an order of magnitude stronger for the 
case with Ca=O.O02. On the other hand, the elapsed time is about one order of 
magnitude smaller for the smaller Ca of 0.002, indicating less time for conductive heat 
transfer for smaller Ca. Therefore, for the jet with Ca = 0.002 the relative strength of 
convective to conductive heat transfer is about two orders of magnitude larger than the 
jet with Ca = 0.2 and the isotherms are aligned with the flow field. 

The influence of the various non-dimensional numbers on the breakup time and 
satellite drop radius are determined and compared with those of pure capillary 
breakup. In table 3 the percentage change in the breakup time and satellite radius 
are given versus Bi (Ma = 20 and Ca = 0.02), Ma (Bi = 1.0 and Ca = 0.02) and 
Ca (Bi = 1 .O and Ma = 20). Percentagechange of breakup time is defined as the difference 
between the breakup time of the thermocapillary ( t th)  and the isothermal capillary (tCJ 
jets divided by the breakup time of the capillary jet, i.e. [(t,, - tca)/tca] x 100. Similarly 
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the percentage change of drop radius is defined as the difference between the drop radii 
obtained by the thermocapillary instability (Rth) and capillary instability of the 
isothermal jet (I?ca) divided by the latter, i.e. [(I?,, - Rcu)/Rcu] x 100. The breakup time 
decrezses with increasing Bi and/or decreasing Ma as seen in table 3. Breakup time also 
decreases with increasing Ca. In general, for all the cases studied here, thermocapillarity 
decreases the breakup time within 1 5 %  of the pure capillary breakup time. (Small 
increases in breakup time are observed for small Bi or large Ma). The variations of the 
satellite radius with the non-dimensional parameters is opposite to the variations of the 
breakup time. Table 3 shows that thermocapillarity increases the satellite size for all 
the cases up to 22% larger than the size of the satellite produced due to the capillary 
breakup only. Therefore, out-of-phase surface and thermal disturbances are not very 
effective in reducing the satellite size. 

4. Spatially uniform ambient temperature 
4 , l .  Thermal disturbance with no surface disturbance 

In this section we consider the temporal instability of a cylindrical liquid jet exposed 
to a spatially uniform ambient temperature and subject only to an initial thermal 
disturbance at its surface and no surface displacement. In order to obtain approximate 
values of the non-dimensional numbers involved in practice, consider a water jet with 
radius of 100 pm issuing into ambient air at a slightly different temperature. The 
temperature of the water in the supply tank and the ambient air are assumed to be at 
TI, = 20 "C and TI, = 25 "C, respectively. Using the properties of water and air at these 
temperatures, we obtain Ca = 0.01, Re = 20, and Ma = 140. Assuming pure natural 
convection between the jet and ambient air, Bi = 0.012 is obtained for a 5 "C 
temperature difference. However, since in most practical situations the jet velocity 
relative to air is large, we expect that Bi to be at least one order of magnitude larger. 

The effect of a wide range of parameters on the thermocapillary instability of a liquid 
jet issuing from a nozzle into a spatially uniform ambient is investigated. In an attempt 
to characterize the breakup of the jet we have considered a periodic thermal 
disturbance imposed on the jet surface at the nozzle exit as 

T,(z) = 0.5[1 +cos(kz)] at t = 0 and r = 1. (23) 
It is assumed that TI, is the initial temperature of the liquid in the supply tank and 
A T  = TL - TI,. Therefore, the dimensionless ambient temperature is constant at T, = 1 
and the initial jet temperature is T(z, r )  = 0 except on the surface which is given by (23). 
Notice that (23) expresses an initial condition to the problem rather than a boundary 
condition as discussed in 93. Boundary conditions are given by (6) and (8E(10). 

A two orders of magnitude variation in Bi, Ma, and Ca was considered. Reynolds 
number and wavenumber were kept constant at Re = 2Q and k = 0.7. Numerical 
simulations were performed for three different values of Biot number (Bi = 0.05, 0.5 
and 5.0), Marangoni number (Ma= 14, 140 and 1400), and capillary number 
(Ca = 0.001,0.01, and 0.1). A 40 x 9 element mesh was implemented for the simulations 
with compressed elements near the free surface to resolve both the hydrodynamic and 
thermal boundary layers. The axial direction was discretized uniformly by 40 elements. 
Results show that a periodic thermal disturbance induces a surface displacement with 
the same wavenumber, but with a 180" phase shift. 

Generally, the results indicate that the isotherms are aligned with the free surface and 
follow the evolution of the surface during the earlier times. This is due to the relatively 
large Pr, ranging from 0.7 to 70. A typical case for Ma = 140, Ca = 0.01 and Bi = 0.5 
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FIGURE 14. Typical shape and isotherms of a jet subject to initial thermal disturbance varied 
sinusoidally from 1 at the neck to 0 at the swell on the surface, shortly before the breakup. Initial 
temperature was T = 0 throughout the jet and the ambient temperature was constant at T = 1. The 
number above the figure shows the time and numbers below the figure represent the value of the 
isotherms. The highest isotherm on each figure is located close to the top-left corner of that figure. 
Re = 20, Ma = 140, Ca = 0.01, Bi = 0.5, and k = 0.7. 
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FIGURE 15. Variations of the surface temperature for jets with Ma = 140, Ca = 0.01, and (a)  
Bi = 0.05, (b) Bi = 0.5, and (c) Bi = 5. The solid line represents the initial surface temperature 
disturbance. The curve with highest time belongs to the surface temperature distribution at the time 
of breakup. 

is shown in figure 14. During the early stages of heat transfer, the isotherms are closely 
concentrated around the free surface ; however, the spacing between the isotherms 
increases with time. An increase of Bi corresponds to an increase of convective heat 
transfer from the ambient which results in a warmer jet. An increase of Ma enhances 
the interaction between the hydrodynamics and heat transfer. As mentioned by other 
authors (Cuvelier & Driessen 1986; Shen et al. 1990), high Ma results in distorted 
isotherms. This can be explained by realizing that an increase in Ma, while Re is 
constant, corresponds to an increase in Pr or a decrease of thermal conductivity, K. 
Therefore, the upward convective heat transfer overcomes the downward conduction 
of heat and the ends of the isotherms are turned toward the free surface. For a constant 
Re, a decrease in Ca can be interpreted as an increase in the coefficient of of surface 
tension, ah. Therefore, as discussed earlier the breakup time is decreased by decreasing 
Ca, and a shorter time is available for the conduction of heat inside the bulk of the 
liquid. 

In order to investigate whether the surface temperature retains its initial sinusoidal 
profile, we have plotted the time evolution of the temperature distribution along the 
surface in figure 15 for three different Bi of 0.05, 0.5, 5.0, with Ma = 140 and 
Ca = 0.01. The solid curve in each figure represents the initially imposed surface tem- 
perature as given by (23). The distribution shown by the dashed line corresponds to time 
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Bi Mu Ca Breakup time Satellite radius 

0.05 140 0.01 9.544 0.558 
0.5 140 0.01 9.609 0.558 
5 140 0.01 10.129 0.558 

0.05 14 0.01 10.867 0.558 
0.05 1400 0.01 8.274 0.561 

0.05 140 0.001 3.666 0.575 
0.05 140 0.1 24.884 0.519 

TABLE 4. Variation of breakup time and satellite radius. Re = 20, and k = 0.7 

t = 0.02 and indicates that the amplitude of the initially imposed thermal disturbance 
drops substantially in a short time. However, the sinusoidal profile is conserved up to 
this stage. The next curve on each figure, shown by the dotted line, depicts the surface 
temperature distribution at the time of the breakup. No sinusoidal distribution is 
observed at this time. The sharp decrease of the surface temperature at the breakup 
point is attributed to the sudden decrease of the surface radius at this point and the flow 
of a colder core fluid through the pinch-off area. Generally, distributions shown in 
figure 15 indicate that higher surface temperatures are obtained with higher Bi. They 
also indicate that the surface temperature profiles resemble the jet surface at different 
times. The largest deviation occurs at the swell point where the temperature profile is 
at its lowest level and surface shape has its highest radius. The correspondence of 
surface temperature profile to free surface shape is enhanced when Bi is increased. 

Variations of breakup time with Bi, Ma and Ca are provided in table 4. Although 
Bi is varied by two orders of magnitude, the breakup times does not change 
substantially. However, slightly larger breakup times are obtained at higher Bi. For 
these cases, M = 140 and Ca = 0.01 were kept constant. Table 4 also shows the 
variation of the breakup time with Ma, for Bi = 0.05 and Ca = 0.01. Interestingly, 
within this range of Ma the breakup times varies linearly with the logarithm of Ma. 
Roughly, a 15 YO change in breakup time is observed when Ma is changed by one order 
of magnitude. The largest variation of breakup time is obtained by changing Ca (for 
constant Bi = 0.05 and Ma = 140) as seen in the table. For a constant Re, equation (1) 
shows that a small Ca corresponds to a large surface tension coefficient. Therefore, 
decreasing Ca increases the capillary effects and makes the jet breakup faster. 

Similar results are obtained for the variations of the satellite drop size with Bi, Ma, 
and Ca as given in table 4. Within the range of Bi studied here (0.05 < Bi < 5.0), no 
considerable change in the satellite size is observed. However, a small increase in 
satellite radius is obtained by changing Mu by two orders of magnitude. Table 4 shows 
that the largest variation of satellite size is achieved when Ca is changed in the interval 
of 0.001 < Ca < 0.1. Generally, an inverse proportionality for the breakup time and 
the satellite size is observed. Smaller capillary forces result in smaller growth rates; 
consequently, the breakup times increase. On the other hand, smaller capillary forces 
result in the reduction of the convective fields ; consequently, the flow nonlinearities 
decrease, resulting in a decrease in the satellite size. 

4.2. Thermal disturbance with surface disturbance 
Thus far we have studied the behaviour of a capillary jet subject only to thermal 
disturbances. However, there are many practical situations in which a thermal 
disturbance is accompanied by a surface disturbance. In order to evaluate the relative 
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Breakup time Satellite radius 

= 0.0001 E,, = 0.5 eo = 0.0001 eo = 0.05 

Capillary 13.088 4.600 0.5581 0.556 
Thermocapillary 9.958 4.592 0.5584 0.556 

TABLE 5. Relative effects of the thermal disturbance on the breakup time and satellite radius 
of a jet 

importance of these disturbances, we impose a surface disturbance on the jet as given 
by (20), in addition to the thermal disturbance given by (23). Obviously, the initial 
disturbance amplitude, eo, is an important parameter in this problem and it is expected 
that for large c0 capillary effects dominate the thermocapillary effects. Therefore, it is 
reasonable to perform some simulations to find the range of values for E,, which allows 
a close competition between the two effects. In table 5 we present a quantitative 
comparison of the breakup time and satellite radius for two different cases with 
c0 = 0.0001 and 0.05. The corresponding results for a similar jet without thennocapillary 
effects are also given in this table to provide a direct assessment of the relative 
importance of thermal disturbances. Other parameters for this problem are Re = 20, 
Ca = 0.01, Ma = 140, Bi = 5, and k = 0.7. Comparison of the results obtained with 
and without thermal disturbance for the jet with the initial surface disturbance 
amplitude of q, = 0.05 indicates the absolute dominance of the capillary effects. The 
relative changes in the breakup time and satellite size are negligible when the thermal 
disturbance is superimposed on the surface disturbance. However, results for the case 
with c0 = 0.0001 are promising and a relative change of 24% in breakup time is 
obtained by adding the thermal disturbance. The satellite size, however, remains 
relatively unchanged for this initial amplitude. Therefore, it is concluded that for the 
range of parameters considered here (i.e. a 5 "C difference between the water jet and 
the ambient temperatures), the amplitude of the initial disturbance must be very small 
for the thermal disturbances to be effective in the breakup of the jet. 

5. Discussion and conclusions 
The temporal instability of a capillary jet with constant properties reduces to the 

study of mainly three parameters, namely the Reynolds number based on the liquid 
properties, Re, = (l/v)(cth Ri/p)lI2, the initial disturbance wavenumber, k ,  and its 
amplitude, eo. When the properties are allowed to change, the problem becomes much 
more complex, since not only are more parameters introduced but also the behaviour 
of the liquid jet may substantially change in time. Therefore, the linear theories, which 
are only valid at small times, cannot correctly predict the instability conditions of such 
systems. 

Here, we have considered the temperature dependency of the liquid surface tension, 
and investigated the so-called thermocapillary instability of a liquid jet. The problem 
is governed by the parameters given in (l), namely Re, Ca, Ma  = Re Pr, and Bi. Since 
for most practical situations Re N 0(10), and it has already been shown that for 
Re > 10 there is no significant change in the behaviour of the liquid jet, this parameter 
is kept constant in our investigation. Therefore, only the effect of Ca, Bi, and Ma are 
considered. Keeping Re constant means that the variation of Ma represents the effect 
of Pr or the thermal conductivity of the liquid, K. The amplitudes of the thermal and 
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ca a b 

0.1 0.54918 - 1.11955 
0.2 0.56436 - 2.724 52 
0.4 0.58545 -4.32978 

TABLE 6 .  Constants a and b used in equation (24) for different Ca 

surface disturbances are mainly kept constant, and their detailed effect on the jet 
instability is not investigated here. Limitation of the problem to the above parameters 
was necessary to make it computationally manageable. 

The thermocapillary instability of an axisymmetric liquid jet is investigated subject 
to two different conditions. In the first case a cylindrical liquid jet (an infinitely long 
liquid column) was suddenly exposed to an ambient with a spatially periodic 
temperature distribution along the axis of the jet. In the second case an initial thermal 
disturbance was imposed only on the surface of the liquid while the ambient 
temperature was kept spatially and temporally uniform. 

In the first case, the jet was also given an initial surface disturbance with the same 
wavenumber as the thermal disturbance of the ambient. Again, two conditions are 
considered : in-phase and out-of-phase thermal and surface disturbances. When 
thermal and surface disturbances are in-phase, thennocapillary- and capillary-induced 
flows are in the opposite direction to each other. For a constant Re, Bi controls the 
thermal convection to the ambient, and Mu controls the thermal diffusion from the 
surface to the liquid interior. Together, they control the transient variation of the 
temperature along the liquid surface and, therefore, the extent of the thermocapillary 
flows. On the other hand, for a constant Re, Ca is an indicator of the capillary flows 
in the absence of the thermocapillarity. The results of $3.1 indicate that if the 
disturbances can be made such that the capillary and thennocapillary flows are in 
opposite directions, a parameter range can be obtained where they cancel each other. 
Consequently, a marginally stable jet can be obtained for all the wavenumbers. Figure 9 
defines a critical surface in the (Bi, Ma, &)-space at which the jet is marginally stable. 
The critical curves for k = 0.7 and Cu = 0.1, 0.2 and 0.4 can be represented by 

Bi = Mu" + exp (b), (24) 

where u and b are functions of Ca and are given in table 6. The following fit to the 
critical surface can be obtained : 

(25) Bi = 1.578 10-3C -2.3157~u(0.1187Ca+0.5386) a 

For Ca < 0.05 and for the parameter range studied here, no critical point was observed 
and the jet instability was always governed by capillary effects. An increase in the 
disturbance wavenumber (decrease in the wavelength), keeping the thermal disturbance 
constant, results in an increase in the thermocapillary effects and, therefore, the jet 
becomes stable at even lower Bi (see $3.1.2). The effect of the disturbance wavenumber 
and its amplitude on the critical surface are not quantified here. 

Information on the conditions that render a jet stable can be useful in designing a 
controlled environment for the attainment of long liquid columns. Such columns are 
useful in containerless processing of single crystals. For a stationary liquid column, 
design of an environment with periodic temperature variation is practicable. However, 
the application of such a thermal boundary condition to control the breakup of a 
moving jet is a more complicated task. For a liquid jet, the temperature of the ambient 
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has to be controlled such that each point on the surface of the jet is continuously 
exposed to a constant local ambient temperature. This condition can be attained by 
making the ambient temperature periodic in both space and time. 

If the thermocapillary flows are in the same direction as the capillary flows, the 
originally unstable jet cannot be stabilized. Such thermal effects can, however, be used 
to somewhat control the breakup time and the satellite size. The results indicate that 
an increase in Bi or a decrease in M a  decreases the breakup time as compared to the 
isothermal jet. The breakup times generally decrease on increasing Ca. The satellite 
sizes generally increase because of the thermocapillary effects. The satellite size is 
mainly determined based on the mean convective velocities, which are generally larger 
because of the complementing thermocapillary flows. 

In addition, the thermocapillary instability of a liquid jet exposed to a spatially 
uniform ambient temperature is also investigated. Here, an initial thermal disturbance 
is imposed only on the liquid surface. Two cases are considered. In the first case, an 
initial temperature disturbance is imposed on the surface of the liquid without any 
surface disturbance. This problem has important natural and physical implication. The 
natural instability and breakup of a liquid jet issuing from a nozzle is an everyday 
experience. Since the time of Rayleigh (1879) this instability was considered to be due 
to surface, pressure, or velocity disturbances. The results in 54.1 clearly show that a 
small temperature disturbance can quickly induce a surface disturbance which will 
eventually cause the breakup of the jet. Such temperature disturbances are readily 
available in most natural processes, since upon exiting from the nozzle the liquid 
temperature is usually slightly different than the ambient temperature. For the small 
thermal disturbance amplitudes studied here, the results indicate that neither the 
breakup time nor the satellite size are sensitive to Bi and M a ;  however, they are 
sensitive to Ca. In other words, the initial thermal disturbance only induces a small 
surface disturbance which basically governs the instability of the jet thereafter. 

In $4.2 it is shown that if, in addition to the initial thermal disturbance, a surface 
disturbance is also imposed on the jet, the latter will dominate if the initial amplitude 
ratio of the surface to thermal disturbance is relatively large. For the parameter range 
studied here, surface disturbance amplitude had to be smaller than e0 = 0.0001 to see 
a significant change in breakup times and satellite sizes. This explains the experimental 
results of Faidley & Panton (1990) who did not see a significant effect on the breakup 
of the jet when applying a thermal disturbance on the jet at the nozzle. Their initial 
thermal disturbance was not large enough to significantly alter the original capillary 
instability conditions. More promising results were obtained in the experiments of 
Nahas & Panton (1991) when a larger thermal disturbance was imposed on the jet 
using radiation from a laser source. In general, strong initial thermal disturbances, with 
the condition that the induced thermocapillary flows be in the opposite direction to the 
capillary flows, are needed to control the jet instability and obtain stable jets. 
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